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Abst I

Wetlands OCCUPY a Unique Position On the landscape. Being neither fully aquatic nor
terrestrial, they are poorly understood from a standpoint of seasonal characterization and detection
using spectral sensors. Wetlands ecotones and their associated plant communities offer a seasonally
dynamic ecology which is governed primarily by fluctuations in local hydrologic regimes.
Biogeochemical dynamics, caused by fluctuations in hX&Wg= work to manifest changes in plant
physiology and provide a challenge for the spectral characterization and detection of wetlands. This
paper presents information on the a charactertics of wetland DIA..and attempts to
relate changes in spectral reflectance to the seasonal stresses experienced by wetlands plant
communities.

I-IRnM U(U0TiON

Numerous studies have documented the relationship between spectral and morphological

changes in plants growing in a wide array of medium types and substrates (Milton et a/L, 1991). This
research supports geobotany and agriculture with respect to vegetation growth stages and condition.
Attempts to correlate changes in plant spectra and physiology due to uptake of pollutants have also
been carried out (Clark, 1982). Most of these studies, however, have involved terrestrial plants grown
in controlled environments to limit the effects of cation exchange, which could influence desired
experimental results.

Wetlands plants differ greatly from terrestrial plants in response to stress. Depending on
hydrologic regime, wetlands plants undergo biophysical changes during the growing season to cope
with flooding and the resulting anaerobiosis. Anaerobic respiration requires a completely different
energy requirement from plants than does aerobic respiration. The efficient production of biological
energy is lost in the anaerobic pathway and, provided anaerobic conditions are extended throughout the
growing season, this pathway can be lethal to plants not adapted to flooded conditions. For example,
flood tolerance has been linked to the production and accumulation of non-toxic malate as a by-
product of metabolism (Figure 1). Flood-intolerant plants also produce malate; however, malate is
converted to pyruvate, which is further reduced to ethanol. Although ethanol is toxic to root tissues,
Mitsch and Gosselink, (1986) suggest that ethanol diffuses out of the roots of flood-tolerant plants.
Additionally, metals speciation and nutrient availability modified by the anaerobic environment place
an extra burden on plants.

94-26709
IIUIflhUI94 8 22 09 1



The F this
study was to t,.& the
hypothesis that the stress
experienced by wetlands oL3A
plants (due to seasonal J <
flooding) can be grud ]M

mmm pMRNATE -EE. ACTLYALOEHYDE m-m ErKVCLcharcteized n ground- P 6.

level spectral reflectance •W
data in the .4 to .91A IE (TO
bandpass. This in turn C "oW
would form the basis for A t AT TE
developing a seasonal
"wetland signature,"
therefore allowing data PK&-NCATE AHA, LYAI,,n4I O ETHAJ0L

acquisition strategies to be cam
developed for imaging IMH WD R=
spectrometers. In this
experiment, sumes is a [W+ ,M=AT - AN MLWATE
function of the reduction- M
oxidation (REDOX)
potential. REDOX potential Figure l. Metabolic pathways for o tolernt and flood tolernt
describes the reducing plants dted from MiLc and Gossedr• 1986)
condition of soils whereby
the availability of oxygen and cation exchange capacity is altered due to a positive or negative electric
potential (recorded in millivolts) (Wetz4 1983). In strongly reduced conditions Such as flooded
environments, the REDOX potential can fall to low levels (-200 my) causing the transformation of
metals and nutrients and rendering them unavailable for uptake by plants (Table 1). Ibis serves to
cause stress in plants (Mitsch & Gome/inA, 1986).

Table L Tranformed Elements mud REDOX Potental

Nitrate Nitrus Oxide

Mananc Manganous

Ferric Ferrous

Sulffte sulfide

Carbon Dioxide M ethane------------------



2-1 SUE SEleCTION

Two wetland areas bordering the Rappahannock River in Virginia were selected for this study.
These areas were colonized by the facultative (FAC) wetland species Acer rubrum (red maple). Red
maple was selected owing to its tolerance to flooded environments and its status as a FAC wetland
species. This categorization means that the species is found in wetlands 33% to 66% of the time.
For this investigation, it was important to select two of the same species of wetland plants to ensure
similar physiological responses to stress. The sites have their own distinct hydrological regime and are
close to one another on gradients characterized by zones III and V along the stream terrace. Site 1,
lying along a stream tributary (zone IllI), is "semi-permanently flooded" (Cowardin et al., 1979) and
subjected to standing water periodically throughout the growing season. Site 2 (zone V) is drier,
"temporarily flooded" (Cowardin et al., 1979), and not subject to total seasonal inundation. The soils
of each site are mapped as Congaree loam and Wehadkee local hydric soil units.

2_2 REDOX AND SPECTRAL REFIECTAN"E MEASUREMENTS

REDOX and spectral measurements were collected during the early part of the growing
season for both sites on a weekly basis for three weeks. Other measurements such as water level, pH,
specific conductivity, and dissolved oxygen were also collected. REDOX measurements were made
using a Cole-Parmer pH meter with a platinum ORP probe. In-situ REDOX measurements were
made on moist and inundated soils adjacent to the plant specimens. All measurements were averaged
and recorded in millivolts (my).

Spectral measurements were taken in the field from leaves excised from 25 trees sampled at
random along a 30-meter transect. The tree stands averaged 13.4cm diameter breast height (DBH).
As accessibility permitted, three leaf samples were obtained from different portions of the tree canopy
to limit spectral anomalies between leaf samples occuring high or low in the canopy. Leaf spectra
were obtained using an Analytical Spectral Devices (ASD) PS H field spectroradiometer (350 nm-
1100 an) with a 5 degree field-of-view (.0872 rad). This is approximately equal to a 8 cm diameter
field-of-view at a 1 m sampling distance. Three spectra of each leaf sample were taken and then
averaged to help improve signal-to-noise levels in the resulting spectral file. All measurements were
taken as close to local (solar) noon time as possible. Procedures for obtaining spectra were followed
according to those established by Satterwhite and Henley, 1991. All measurements were referenced to
a Labsphere Spectralon reflectance standard. All targets and reflectance standards were leveled with a
bubble level, and data were collected at a nadir viewing angle.

Raw spectral data files were processed using an existing software routine to convert all binary
files into ASCII. The resulting spectral data sets were smoothed and reduced to 5 nm data using an
interpolation program which applied a cubic spline algorithm.

IIESULIN

311 SPECTRAL CHARACTERISTICS AND REDOX

Figure 2 is an example of the averaged spectral data and corresponding REDOX measurement
taken from wet and dry site red maple specimens. In comparison to the dry site where REDOX
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potentials averaged +372 mv, wet site REDOX potentials averaged -185 mv during the two-week
period of saturation. Spectrally, chlorophyll reflectance in stressed red maples was slightly elevated at
560 nm. There was also an insignificant elevation in the chlorophyll absorption bands at 435 and 675
un. Most notably, a displacement between the averaged spectral curves exists along the "red edge"
boundary between 740 and 780 urn. This suggests that a red edge shift may exist for (FAC) wetlands
plants stressed by prolonged flooding. The red edge shift is a theoretical spectral characteristic
diagnostic of maturing, healthy green vegetation. It is described as the position of the chlorophyll
absorption edge shifting toward longer wavelengths as plants mature (Collins, 1978, Campbell, 1987).

3-2 STATISTICAL EVAIIATION OF R•D FDGE INFIrCTION POINTS

First derivative curves for the spectral samples were generated for the wet site and dry site red
maples. Established methods (Sa/isbwy et al. 1987; Milton et al. 1991; and Horler et al. 1980) were
used to analyze the maxima of the first derivative spectra to characterize the inflection points
associated with the red edge. The resulting first derivative curves illustrate a detectable red edge shift
between the wet and dry specimens (Figure 3). A t-test (two-sample analysis) was employed to test
the variability of the sample first derivatives between wet and dry site red maple specimens. Table 2
shows the descriptive statistics and Table 3 provides statistical results of the t-test for the first
derivatives.

Table 2. Descriptive Statistics for Sample Firt Derivatives

715.4mn 706.5=m

715nm 707nm

719nm 708mn

715.3mn 706.4=m

9.75 2.75

3.12 1.66

0.62 0.33

4-DISCUSSION

The results computed for the red edge first derivative maxima indicate that a statistically
significant difference exists between the spectral characteristics of red maples on wet and dry sites
having different REDOX potentials. Since plant chemical assays were not performed, it can only be
speculated that the transformation of available plant nutrients under severely reduced conditions
contributed to the stress of the wet site specimens. However, the rejection of the null hypothesis
confirms the statistical significance of the variability between wet and dry site specimens and warrants
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further investigation. The differences in maxima characterizing the red edge is consistent with other
investigations involving nutrient and metals stress in plants (M'lton et aL, 1987 & 1991). The
difference here is that the stress is not anthropogenic, but due to natural phenomena.

Table 3. t-Test Results for 71" Derivattve Iflection Points

715.4nm 706.59nm

9.75 2.75

3.12 1.66

715rim 707rim

The results of this study suggest that wetlands occupied by monotypic stands of (FAC)
vegetation, subjected to prolonged flooding, can be stressed to the degree that subtle changes can be
detected with spectroradiometers. If this is the case, a strategy may exist for mapping wetlands that
are cloaked within stands of characteristically upland and FAC plant species. Ecotypic and adaptive
variations within plant species are well documented and are ecologically significant (Brewer, 1979).
Golet and Lowry (1987) documented the biophysical differences in the obligate species Chamaecyparis
thyoides (Alantic White Cedar) on six different sites in Rhode Island having six different hydrological
regimes. Most of the variations between the sites occurred as a function of flooding, pH, tree crown
cover, and stand density. Although spectral measurements and REDOX potentials were not
considered, wide variations existed between the biophysical characteristics of the trees. Lowry (1984)
also discovered growth variations among red maples on seven hydrologically distinct sites.

Although recordable with field and laboratory instruments, the detection of this phenomenon
with imaging spectrometers may only be possible if the spatial and temporal variability of wetlands
plants is observed long enough to characterize the specific stress signatures. In the case of facultative
plants subjected to prolonged periods of flooding, the gap between the inflection maxima may widen
to afford use of broader band sensors.

Clearly, a better understanding of the spectral behavior of wetlands plants is needed. These
dynamic ecosystems are adapted to extreme and severe stresses which disrupt and prove fatal to flood-
intolerant, upland plants. Furthermore, the spectral characterization of plants translates into observing a
facet of the energy budget of an ecosystem. Changes in the way energy is transferred by wetland
plants on a seasonal basis could provide a powerful diagnostic tool in managing wetland (and
terrestrial) ecosystems.
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